Формулы тетраэдра
Для расчёта всех основных параметров тетраэдра воспользуйтесь калькулятором.
Свойства тетраэдра
- Параллельные плоскости, которые проходят через два скрещивающихся ребра, образуют описанный параллелепипед
- Отличительным свойством тетраэдра является то, что медианы и бимедианы фигуры встречаются в одной точке. Важно, что последняя делит медианы в отношении 3:1, а бимедианы - пополам
- Плоскость разделяет тетраэдр на две равные по объему части, если проходит через середину двух скрещивающихся ребер
Виды тетраэдров
-
Правильный тетраэдр - это такая правильная треугольная пирамида, каждая из граней которой оказывается равносторонним треугольником.
У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину
- Равногранный тетраэдр - это такой тетраэдр, у которого все грани треугольники равны
- Ортоцентрический тетраэдр - это такой тетраэдр, у которого каждая высота, опущенная из вершины на противоположную грань, пересекается с остальными высотами в одной точке
- Прямоугольный тетраэдр - это такой тетраэдр, у которого каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине
-
Каркасный тетраэдр - это такой тетраэдр, который соответствует следующим условиям:
- есть сфера, которая касается каждого ребра
- суммы длин ребер, что скрещиваются равны
- суммы двугранных углов при противоположных ребрах равны
- окружности, которые вписаны в грани, попарно касаются
- каждый четырехугольник, образующийся на развертке тетраэдра — описанный
- перпендикуляры, поставленные к граням из центров окружностей, в них вписанных, пересекаются в одной точке
- Инцентрический тетраэдр - это такой тетраэдр, у которого отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке
Формула высоты тетраэдра
$$
AO = {\sqrt{2 \over 3}} * a
$$
Формула объёма тетраэдра
$$
V = {\sqrt{2} \over 12} * a^3
$$
Основные формулы для правильного тетраэдра
-
Формула площади
$$
S = a^2 * \sqrt{3}
$$
-
Радиус вписанной сферы, Rвпис
$$
R_{впис} = a * {\sqrt{6} \over 12}
$$
-
Радиус описанной сферы, Rопис
$$
R_{опис} = a * {\sqrt{6} \over 4}
$$